Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions.

نویسندگان

  • John H Grabber
  • John Ralph
  • Catherine Lapierre
  • Yves Barrière
چکیده

Lignification limits grass cell-wall digestion by herbivores. Lignification is spatially and temporally regulated, and lignin characteristics differ between cell walls, plant tissues, and plant parts. Grass lignins are anchored within walls by ferulate and diferulate cross-links, p-coumarate cyclodimers, and possibly benzyl ester and ether cross-links. Cell-wall degradability is regulated by lignin concentration, cross-linking, and hydrophobicity but not directly by most variations in lignin composition or structure. Genetic manipulation of lignification can improve grass cell-wall degradability, but the degree of success will depend on genetic background, plant modification techniques employed, and analytical methods used to characterize cell walls.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Do Lignin Composition, Structure, and Cross-Linking Affect Degradability? A Review of Cell Wall Model Studies

turity, the degradability of stems, and to a lesser degree leaves, is further depressed by lignification of primaryBecause of the complexity of plant cell wall biosynthesis, the mechwalled parenchyma and epidermal tissues (Wilson and anisms by which lignin restrict fiber degradation are poorly understood. Many aspects of grass cell wall lignification and degradation Hatfield, 1997). These reduc...

متن کامل

Genetic and molecular basis of grass cell-wall biosynthesis and degradability. III. Towards a forage grass ideotype.

Lignification of cell walls is the major factor controlling the digestibility of forage grasses. Thus far, from QTL analysis, about 15 locations involved in cell-wall lignification or digestibility have been identified in the maize genome, many of which colocalise with QTLs involved in corn borer susceptibility. Genetic diversity for enhancing cell-wall digestibility in maize must be identified...

متن کامل

Crj20086 1801..1809

Grass degradability declines as cell wall and lignin concentrations increase during maturation. The role of tissue development and lignification in decline of stem degradability was examined in maize (Zea mays L.) internodes sampled at 10 stages of growth from early elongation through plant physiological maturity. The fourth elongated internode above ground level was collected from three maize ...

متن کامل

Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants.

The brown-midrib mutants of maize have a reddish-brown pigmentation of the leaf midrib and stalk pith, associated with lignified tissues. These mutants progressively became models for lignification genetics and biochemical studies in maize and grasses. Comparisons at silage maturity of bm1, bm2, bm3, bm4 plants highlighted their reduced lignin, but also illustrated the biochemical specificities...

متن کامل

Alfalfa Stem Tissues: Cell Wall Deposition, Composition, and Degradability

maturation on stem quality may have the largest potential benefit. Declining cell wall degradability of alfalfa (Medicago sativa L.) The tools of molecular biology offer the potential of stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, altering the development of alfalfa stems in very precise composition, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comptes rendus biologies

دوره 327 5  شماره 

صفحات  -

تاریخ انتشار 2004